http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html

Networking IPv6 User Guide for JDK/JRE 5.0

This document covers the following topics:

Overview

Supported Operating Systems

Using IPv6 in Java

Details on IPv6 Support in Java
Special IPv6 Address Types
IPv6-Related System Properties
Dual-Stack Node

Java Application Impact

IPv6 Networking Properties

o

O O O O

Overview

Within the past few years IPv6 has gained muchtgresceptance in the industry, especially in aeregions of the world, i.e.,
Europe and the Asian Pacific. Extensibility, mdpiliquality of service, larger address space, aotdiguration, security, multi-
homing, anycast and multicast, and renumbering—ethes some of the features of IPv6 that make ital@s.

With the release of J2SE 1.4 in February 2002, Bagan supporting IPv6 on Solaris and Linux. SupfooriPv6 on Windows was
added with J2SE 1.5. While other languages, suéasd C++ can support IPv6, there are some medj@ardages to Java:

o With Java you invest in a single code base thiabik IPv4- and IPv6-ready.
e Your existing Java applications are already IPvébéed.
« Migration to IPv6 is easy

We will prove these statements with code exampiééswand provide additional details on IPv6 support

Supported Operating Systems
The following operating systems are now supportethb J2SE reference implementation:

e Solaris 8 and higher
o Linux kernel 2.1.2 and higher (kernel 2.4.0 anchbigrecommended for better IPv6 support)
¢ Windows XP SP1 and Windows 2003

Using IPv6 in Java

Using IPv6 in Java is easy; it is transparent artdmaatic. Unlike in many other languages, no pgriginecessary. In fact, there is
need to even recompile the source files.

Consider an example frofthe Java Tutorial

Socket echoSocket = null;
PrintWriter out = null;
BufferedReader in = null;

try {
echoSocket = new Socket("taranis", 7);

out = new PrintWriter(echoSocket.getOutputStr eam(), true);
in = new BufferedReader(new InputStreamReader
echoSocket.getinputStream()));
} catch (UnknownHostException e) {
System.err.printin("Don't know about host: ta ranis.");
System.exit(1);
} catch (IOException e) {
System.err.printin("Couldn't get 1/O for "
+ "the connection to: taranis.");
System.exit(1);

/I ... code omitted here
communicateWithEchoServer(out, in);

out.close();

1 12/22/201!

http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html

in.close();
stdin.close();
echoSocket.close();

You can run the same bytecode for this exampl@ué Imode if both your local host machine and trsgidation machine (taranis)
are IPv6-enabled.

In contrast, if you wanted the corresponding C pawogto run in IPv6 mode, you would first need totpio Here's what would need
to happen:

Excerpt of original C code:

struct sockaddr_in sin;
struct hostent *hp;
int sock;

/* Open socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) {

perror("socket");

return (-1);

}

/* Get host address */
hp = gethostbyname(hostname);

if (hp == NULL || hp->h_addrtype != AF_INET || hp-> h_length != 4) {
(void) fprintf(stderr, "Unknown host '%s"\n", ho stname);
(void) close(sock);
return (-1);

sin.sin_family = AF_INET;
sin.sin_port = htons(port);
(void) memcpy((void *) &sin.sin_addr, (void *)hp->h _addr, hp->h_length);

/* Connect to the host */

if (connect(sock, (struct sockaddr *)&sin, sizeof(s in)) ==-1) {
perror("connect”);
(void) close(sock);
return (-1);

}
M odified | Pv6-awar e C code:

struct addrinfo *res, *aip;
struct addrinfo hints;

int sock = -1;
int error;
/* Get host address. Any type of address will do. * /

bzero(&hints, sizeof(hints));
hints.ai_flags = AI_ALL|AI_ADDRCONFIG;
hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(hostname, servicename, &hints, &res);
if (error 1= 0) {
(void) fprintf(stderr,
"getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);
return (-1);

/* Try all returned addresses until one works */

for (aip = res; aip != NULL; aip = aip->ai_next) {
/*
* Open socket. The address type depends on what
* getaddrinfo() gave us.

*

/

sock = socket(aip->ai_family, aip->ai_socktype, aip->ai_protocol);
if (sock == -1) {

perror("socket");
freeaddrinfo(res);
return (-1);

/* Connect to the host. */

if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {
perror("connect”);
(void) close(sock);

2 12/22/201!

http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html

sock = -1;
continue;
}
break;

freeaddrinfo(res);
Note that for new applications, if you write add-family-agnostic data structures, there is no neeg®rting.

However, when it comes to server-side programmir@/@++, there is an additional wrinkle. Namely, eleging on whether your
application is written for a dual-stack platformch as Solaris or Linux, or a single-stack platfosoch as Windows, you would
need to structure the code differently. For seside-programming, Java shows a big advantage. Mbwste the same code as
before:

ServerSocket server = new ServerSocket(port);
Socket s;
while (true) {

s = server.accept();

doClientStuff(s);

}
Now, however, if you run the code on an I-enabled machine, you immediately have an IPv6-edatgrvice.

Here's the corresponding server C code for a daakplatform:

int ServSock, csock;
struct sockaddr addr, from;

ServSock = socket(AF_INET6, SOCK_STREAM, PF_INET6);
bind(ServSock, &addr, sizeof(addr));
do {
csock = accept(ServSocket, &from, sizeof(from));
doClientStuff(csock);
} while (!finished);

Notice that on a du-stack machine, since one socket, the IPv6 soaliétie able to access both IPv4 and IPv6 protatatks, you
only need to create one socket. Thus this servepotentially support both IPv4 and IPv6 clients.

Here's the C code for the same server for a singtaplatform:

SOCKET ServSock[FD_SETSIZE];

ADDRINFO Al0, Al1;

ServSock[0] = socket(AF_INET6, SOCK_STREAM, PF_INET 6);
ServSock[1] = socket(AF_INET, SOCK_STREAM, PF_INET) ;

b-ir.1d(ServSock[O], AlO->ai_addr, AlO->ai_addrlen);
bind(ServSock[1], Al1->ai_addr, Al1->ai_addrlen);

select(2, &SockSet, 0, 0, 0);
if (FD_ISSET(ServSocket[0], &SockSet)) {
/I IPv6 connection csock = accept(ServSocket[0], (LPSOCKADDR)&From, FromLen);

}
if (FD_ISSET(ServSocket[1], &SockSet))
/I IPv4 connection csock = accept(ServSocket[1], (LPSOCKADDR)&From, FromLen);

—

Here you need to create two server sockets, on@¥ér stack and one for IPv4 stack. You also needdiltiplex on the two sockets
to listen to connections from either IPv4 or IPViémts.

With Java you can run any Java applications, chesierver, on an IPv6-enabled platform using J23Eor later, and that
application will automagically become IPv6-enabled.

Contrasting this with legacy, native-language agapions, if you wanted any C/C++ applications tdPe5-enabled, you would net
to port and recompile them.

How IPv6 Workson a Java Platform

The Java networking stack will first check whett@r6 is supported on the underlying OS. If IPvBupported, it will try to use the
IPv6 stack. More specifically, on dual-stack systémsgll create an IPv6 socket. On separate-staskesys things are much more
complicated. Java will create two sockets, onéRert and one for IPv6 communication. For clientesicCP applications, once the
socket is connected, the internet-protocol famipetwill be fixed, and the extra socket can be aofer server-side TCP
applications, since there is no way to tell fromakhP family type the next client request will cemwo sockets need to be
maintained. For UDP applications, both sockets béliheeded for the lifetime of the communication.

3 12/22/2011

http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html
Java gets the IP address from a name service.

Details on | Pv6 support in Java

You don't need to know the following in order tedBv6 in Java. But if you are curious and whatrtow what happens under
various circumstances, the remainder of this doetirsieould provide answe

Special 1Pv6 Address Types

Unspecified address (:: corresponding to 0.0.0.0in 1Pv4)

This is also callednylocal orwildcard address. If a socket is bound to an IPv6 anyladdress on a dual-stack machine, it can
accept both IPv6 and IPv4 traffic; if it is bouradan IPv4 (IPvdmapped) anylocal address, it can only accept IRfld. We alway:

try to bind to IPv6 anylocal address on a dualistaachine unless a related system property iosetd IPv4 Stack.

When bound ta , methodServerSocket.accept will accept connections from both IPv6 or IPv4tso3he Java platform API
currently has no way to specify to accept connastnly from IPv6 hosts.

Applications can enumerate the interfaces usistgorkinterface and bind &serverSocketChannel to each IPv6 address, and
then use a selector from thiew I/O APIto accept connections from these sockets.

Note: The option discussed below is introduced in Digtfipngwg-rfc2553bis-03.txt. It will be
supported in the Java 2 platform when it becom&ardard.

However, there is a new socket option that chatfigeabove behaviour. Draft-ietf-ipngwg-rfc2553bB&#Rt has introduced a new IP
level socket option, IPV6_V6ONLY. This socket optieestricts AF_INET6 sockets to IPv6 communicationl. Normally,
AF_INET6 sockets may be used for both IPv4 and IBu@&munications. Some applications may want tagiotsheir use of an
AF_INET6 socket to IPv6 communications only. Faegé applications the IPV6_V60ONLY socket optionasied. When this
option is turned on, the socket can be used to aeddeceive IPv6 packets only. By default thisapts turned off.

L oopback address (::1 corresponding to 127.0.0.1 in 1 Pv4)

Packets with the loopback address must never liesemlink or forwarded by an IPv6 router. There tavo separate loopback
addresses for IPv4 and IPv6 and they are treatedcis

IPv4 and IPv6 addresses are separate address spaeps when it comes to "::".
Compatibility address::w.x.y.z

This is used for hosts and routers to dynamicaliyel IPv6 packets over IPv4 routing infrastructlires meaningful for OS kernel
and routers. Java provides a utility method toitest

IPv4-mapped address :: ffff:w.x.y.z

This is an IPv6 address that is used to represeli\al address. It allows the native program totbeesame address data structure
and also the same socket when communicating with w4 and IPv6 nodes. Thus, on a dual-stack mattelPv4-mapped address
support, an IPv6 application can talk to both IRwdl IPv6 peer. The OS will do the underlying plungbiequired to send or receive
an IPv4 datagram and to hand it to an IPv6 de#imabcket, and it will synthesize an IPv4-mappg@dbl address when needed.

For Java, it is used for internal representatibhas no functional role. Java will never returnRw-mapped address. It understands
IPv4-mapped address syntax, both in byte array extdepresentation. However, it will be convertetbian IPv4 address.

| Pv6-Related System Properties

On dual stack machines, system properties areged\vior setting the preferred protocol stack—IPvdRy6—as well as the
preferred

address family types—inet4 or inet6.

IPv6 stack is preferred by default, since on a-dtetk machine IPv6 socket can talk to both IP\@lI&v6 peers.

This setting can be changed throughjthe.net.preferlPv4Stack=<true|false> system property.

By default, we would prefer IPv4 addresses ovebl®ddresses, i.e., when querying the name servige DNS service), we would
return Ipv4 addresses ahead of IPv6 addressese @hetwo reasons for this choice:

1. There are some applications that expect an |IBg#deas textual format, i.e. "%d.%d.%d.%d". UsingRwy¥ address minimizes
the surprises;

4 12/22/201!

http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html

2. Using IPv4 address, we can use one call (witlPa6 socket) to reach either a legacy IPv4-onlyisernor an IPv6 service
(unless the IPv6 service is on a Ipv6 only node).

This setting can be changed through the systemepsgpva.net.preferlPv6Addresses=<truelfalse>
Dual-Stack Node

For many years, if not forever, there will be a miXPv6 and IPv4 nodes on the Internet. Thus cdiifity with the large installed
base of IPv4 nodes is crucial for the successefrimsition from IPv4 to IPv6. Dual stack, definedRFC 1933, is one of the main
mechanisms for guaranteeing a smooth transitioa.cfher mechanism is IPv6 packet tunneling, whiatelievant to the JDK only
through the IPv4-compatible address. The form#résmost relevant piece to the JDK. A dual stackuisles implementations of
both versions of the Internet Protocol, IPv4 andblP

A general property of a duatack node is that an IPv6 socket can communiagtewith an IPv4 and IPv6 peer at the transpore
(TCP or UDP) . At the native level, the IPv6 soaketnmunicates with an IPv4 peer through an IPv4pedpPv6 address.
However, unless a socket checks for the peers seltiype, it won't know whether it is talking tol&v4 or an IPv6 peer. All the
internal plumbing and conversion of address typetone by the dual-protocol stack.

Note: IPv4-mapped address has significance only antipéeimentation of a dual-protocol stack. It is useféke (i.e., appear in the
same format as) an Ipv6 address to be handed @eer iPv6 socket. At the conceptual level it hasate; its role is limited at the
Java API level. Parsing of an IPv4-mapped addeesapported, but an IPv4-mapped address is nelvened.

Java Application | mpact

1. There should be no change in Java application darerything has been done appropriately. there are no direct
references to IPv4 literal addresses; insteadnhosts are used.

2. All the address or socket type information isagrsulated in the Java networking API.

3. Through setting system properties, address tggéoasocket type preferences can be set.

4. For new applications Ipv6-specific new classesARLts can be used.

communication scenarios.

(Nodes) || V4 Only || V4/V6 || V6 Only
V4 Only X X

V4/V6 X X X
V6 Only X X

Top row and left column represent various nodegygteempting to communicate. An x indicates thaséhnodes can communicate
with each other.

UDP
scenario 1:

Either hostl or host2 can be a native application.

hostl isserver, host2 is client

If host2 wants to talk to hostl, it will create & Socket. It then looks up the IP address for h@&itice hostl1 only has a v4 protocol
stack, it will only have IPv4 records in the namaeKup service. So host2 will try to reach hosthgsin IPv4-mapped address. An
IPv4 packet will be sent by host2, and host1 wilhk it is communicating with a v4 client.

hostl isclient, host2 is server

If host2 is the server, it will first create a t§pe socket (by default), then it will wait for amctions. Since hostl supports v4 onl
creates a v4-type socket. They resolves the nameo&i2. It only gets v4 address for host2, sibcdeésn't understand IPv6 address.
So it connects to host2 using v4 address. A v4gtaghl be sent on the wire. On host2, the duatlstaill convert the v4 packet into

a v6 packet with a v4-mapped address in it and famcer to the v6 socket. The server applicatidlhlvandle it as if it is a
connection from a v6 node.

Class Changes

I net Addr ess

This class represents an IP address. It providdessl storage, nar-address translation methods, address conversidrodstas

5 12/22/2011

http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html

well as address testing methods. In J2SE 1.4ckhés is extended to support both IPv4 and IPvBesdds. Utility methods are
added to check address types and scopes. The s tf addresses, IPv4 and IPv6, can be distingdili the Java type
Inet4Address andinet6Address

Two new subclasses biktAddress — are creatednet4Address andinet6Address . V4- and V6-specific state and behaviors are
implemented in these two subclasses. Due to Jabpest-oriented nature, an application normallyyardeds to deal with
InetAddress class—through polymorphism it will get the corrbehavior. Only when it needs to access protoaoiijaspecific
behaviors, such as in calling an IPv6-only metluwdyhen it cares to know the class types of thad@ess, will it ever become
aware oOfinet4Address andinet6Address

The new methods introduced are:

InetAddress:
isAnyLocalAddress
isLoopbackAddress
isLinkLocalAddress
isSiteLocalAddress
isMCGlobal
isMCNodeLocal
isMCLinkLocal
isMCSiteLocal
isMCOrgLocal
getCanonicalHostName
getByAddr

I net 6Addr ess:
i sl Pv4Conpat i bl eAddr ess

I net Addr ess and Different Naming services

Prior to 1.4)netAddress utilized the system configured name service tolueshost names. In 1.4, we have added a Java DNS
provider through JNDI for alternative name lookuysu can tell the JDK to use this provider by seftup a few system properties.
These system properties are documented in thesyat@m properties section. In the future, we plaprovide a generic service
provider framework so that you can write your ovem service providers.

A Word on Serialization

All IPv4 addresses are represented in Javeeg\ddress objects. They are serializediastAddress objects, and deserialized
from InetAddress tOInet4Address to keep backward compatibility. IPv6 addressesepeesented aset6Address and are
serialized as such.

Socket , Ser ver Socket , and Dat agr anSocket

Due to the object-oriented nature of Java, the addsges and storage structures are not exposied sbcket API level, so no new
APIs are needed. The existing socket APIs handle IRv4 and IPv6 traffic.

The selection of which stack to use depends upeffoflowing:

1. The underlying OS support;
2. The user's stack preference property setting.

All supported Ipv6 socket options have a IPv4 ceypdrts. Thus no new APIs were added to suppof feeket options. Instead,
the old APIs are overloaded to support both V4\d6docket options.

Ml ti cast Socket
Again all the socket options APIs are overloadesugport IPv6 multicast socket options.

We have added two new APIs to set/get networkfetes in addition to the existing

MulticastSocket.setInterface /MulticastSocket.getinterface that takes/returns anetAddress instance. The two existing
methods are used to set or retrieve the netwoekfade used by the currewtiticastSocket to send multicast packets (i.e.,
equivalent taP_MULTICAST_IF in native socket option). For IPv4, the interfagas indicated by an IP address. Thus we can use the
equivalentnetAddress in Java. They will continue to work with IPv6 mialist socket. However, in IPv6, according to RF635

the interface should be indicated using an interfadex. To better support the concept of a netwaskface, we introduced a new

classNetworkinterface . It encapsulate the data representing the stateeafetwork interface, including name and IP askeks an
some basic manipulation methods. Thus we havedated two new methods for setting the outgoingiaée for multicast socket:
setNetworkinterface andgetNetworkinterface . They take or return etworkinterface object. These new methods can be

used with both v4 and v6 multicast.

Methods have also been added for joining and Igeaimulticast group on a network interface. This weeviously unavailable in

6 12/22/2011

http://download.oracle.com/javase/1.5.0/docs/guide/net/ipv6_guide/index.html
the Java API.

MulticastSocket:

Networkinterface getNetworkinterface()
setNetworkinterface(NetworkInterface netlf)

joinGroup(SocketAddress mcastaddr,NetworkInterface netlf)
leaveGroup(SocketAddress mcastaddr,Networkinterface netlf)

URL, URI parsers

Literal IP addresses can be used in URL/URIs. Hawesince colon:() is used in existing URL/URI specifications to asgte host
from port, using literal IPv6 representation in URRIs without modification will fail in parsing. Tus for specifying literal IPv6
addresses in URL/URIs, RFC 2732 was created. Trengeof URL/URI has been updated to be compliaitit WFC 2732.
SocketPermission

SincesocketPermission utilizes URLS, its implementation has been updé&dae compliant with RFC 2732.

codebase , used in defining a permission, is a variant ofLlURs such, it should follow URL formats and contiens. RFC 2732
format is used for URL anecbdebase ; RFC 2373 format is used everywhere else.

| Pv6 Networking Properties
java. net.preferl Pv4aStack (default: false)

If IPv6 is available on the operating system, thdeailying native socket will be an IPv6 socket.sTailows Java(tm) applications to
connect too, and accept connections from, both HWPv6 hosts.

If an application has a preference to only use Ifbekets, then this property can be set to true.iffiplication is that the application
will not be able to communicate with IPv6 hosts.

java. net. preferl Pv6Addresses (default: fal se)

If IPv6 is available on the operating system, tefadlt preference is to prefer an IPv4-mapped addoger an IPv6 address. This is
for backward compatibility reasons—for example, lepgions that depend on access to an IPv4-onljicgror applications that
depend on the %d.%d.%d.%d representation of addReas.

This property can be set to try to change the peafees to use IPv6 addresses over IPv4 addressesalbws applications to be
tested and deployed in environments where thecgifuh is expected to connect to IPv6 services.

JNDI DNS serviceprovider settings:

sun. net. spi . naneservi ce. provi der. <n>=<def aul t | dns, sun|...>

Specifies the name service provider that you can Bg default, Java will use the system-configuredne-lookup mechanism, such
as file, nis, etc. You can specify your own byisgtthis option<n> takes the value of a positive number and it inggahe
precedence order: a small number takes higher pdeoee over a bigger number. In 1.4 , we have gegvbne DNS name service
provider through JNDI, which is calles,sun .

sun. net. spi . naneservi ce. nameserver s=<serverl_i paddr, server 2_i paddr ...>

You can specify a comma separated list of IP addsethat point to the DNS servers you want to use.

sun. net. spi . naneservi ce. domai n=<domai nnane>

This property specifies the default DNS domain naeng ,eng.sun.com .

7 12/22/201!

